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An analysis is made of the dependence of the Hall angle and of the conductivity of a many-
valley semiconductor on an external electric field inthe case when the intervalley scat- -
tering time depends strongly (compared with all other quantities) on the heating power,
In this case the electric~field dependences of the Hall angle and the canductivity are nof
determined by the energy dependence of the momentum dissipation time (which is the
usual situation) but by the dependence of the intervalley scattering time on the heating
. power, At certain critical values of the magnetic field, the dependences considered here

e change basically from curves with minima {o curves with maxima. An increase in the
magnetic field applied to a two-valley semiconductor gives rise tqQ a sityation in which
the average energies of the valleys change in sucha way that the energy which is the
lower of the two in H = 0 becomes the higher energy, Moreover, there are always two
values of the magnetic field (one positive and one negative) in which the average en-
ergies of the valleys become equal, Reversal of the magnetic field gives rise to a new
state, i.e,, the conductivity and the Hall angle exhibit effects which are odd with respect

to the magnetic field,

1. The calculation of the galvanomagnetic co-

s cificiinis of many-valley semiconductors in heat-
ing electric fields js rather complicated in the case
. when the effect of the Hall field on the heating of
carriers is taken into account, For a semiconduc-
tor with A valleys, the distribution functions corre-
sponding to different valleys and the Hall field
should be obtained self-consistently, i.e., by solving
a system of A + 1 equations (A transport equations
and the condition that the transverse current van-
ishes), Such a problem was solved numerically

for each valley using the effective temperature
approximation and assuming that the magnetic field
is weak [1-3]. In previous papers, it was only
pointed out that the effect of the Hall field on the
valley distribution functions should be taken into
account (see, for example, [4]) or the whole effect

¢ was neglected altogether [5, 8]. Since the nu-
-merical solutions clearly cannot provide complete

* information about the dependences of the Hall field

and the magnetoresistance on the electric and mag"‘~
netic fields, we decided to tackle this prohlem using
a different method

Our aim i8 to investigate quahtatively the Hall
effect in arbitrary electric and arbitrary magnetic
(but nonquantizing) fields usipg a method which was
developed in [7]. We shall consider a two-valley
gsemiconductor and agsume that the orientation of
the electric field with respect to the symmetry axis
of the valleys is arbitrary [Eq. (4)]. B is found that
an increase in the magnetic field gives rise to a
situation {n which the population of the valleya’
changes in such a way that the valley which is cool~
erfor H= 0 and, therefore, contains more electrons
if the intervalley scattering is due to phonons [8, 8]
(or fewer electrons if the scattering is dus to im-~
purities [8, 10]) becomes hotter for H — *, which
means that it becomes less (or, alternatively, more)
populated than the other valley. Therefore, by in-
fluencing the Hall field, the magnetic field leads to
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a tranefer of energy, and, therefore, also toa trans-
fer of carriers between the valleys, Moreover, for
an arbitrary external electric field, there are two
values of the magnetic field (one positive and one
negative), depending on the angle p between the
current and the symmetry axis of the valley, in
which the heating and the population of the two val-
leys become equal [Eq. (13)]. In general, the re-
vessal of the magnetic field (H— —H) gives rise to
anew state, i.e., the effects in question become odd
‘with respect to the magnetic field. If the momentum
dissipation time is independent of the emnergy
[7;; (¢) = const] then, in contrast to isotropic semi-
conductors which do not exhibit any magnetoresis-
tance, the magnetoresistance of many-valley semi-
conductors (which is due to a transfer of carriers
caused by heating) can be either positive or nega-
tive depending on the magnetic field and the angle gp.
I the in%’ervalley scatteriag time depends strongly
on the heating power {Eq. (25)], the dependences of
the tangent of the anisotropy angle (tan 4 = © =
Ey/Ey) and of the conductivity (o*) on the electric
field are governed by the dependence of the inter-
valley scattering time on the heating power rather
than by the energy dependence [74;(£)] of the mo-
mentum dissipation time (which is the usual situa-
tion). Depending on the magnetic field, these quan-
tities can exhibit either maxima or minima, For
every angle @, there are three critical values of the
tic fieldat which the form of the dependences
&(Ey) and o*(E,) changes radically.

2, I the intervalley scattering time is con-
siderably longer than all the imravalley scattering
times, the electrons belonging to a given valley
.can be regarded as an essentially isolated group
“of carriers. Therefore, in the case ELH, the cur-
rent of electrons in a valley « in an arbitrary
magnetic field is given by

i ong (plY 4 nigy 8 ) By, 8!
where n, is the number of elcctrons in the valley o
and the guaniities p‘ﬁ) and p(ﬁg have the follow-

ing form inthe coordinate system corxesponding to
the principal axes of the mass ellipsoid:
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Fig, 1. Currentis in the direction
of the x axis. The magnetic field
H = H, is perpendicular to the
plane of the figure,

¥

Here, the axis 1 is in the direction of the sym-
metry axis of the mass ellipsoid and e is the mag-
nitude of the electron charge.

For simplicity, we shall consider a two-valley
semiconductor (Fig. 1) and assume that the exter-
nal electric field Ey is applied in the valley plane a
an arbitrary angle ¢ to the symmetry axis. The
magnetic field H = H; is perpendicular to the val-
ley plane, i.e., it is oriented along the second sym-
metry axis, which implies that the denominators in
Egs. (2) and (3) are identical for both valleys {for
example, this can occur in the case of n-type Ge if
the electric field is in the (100) plane and H is ap-
plied along the four-fold symmetry axis], Therefore

pil D =py 9 (1 + 2 sin 29), Byy' P =p1, ¢ (1 F a sin 2y),
Biy ¥ =1p; s0c082p, pllP =-—pliV =i, ,

“
and, for a two-valley semicanductor, we find u =
'/z(l‘n + i zz) Y

g — gy
Bez+en”

f==pm 2=

¥or Ge we obtain

3 . 1 -
p=g (bt 2m). B (e + 2ems). gl

Since B k3 =‘—pkij, the heating power‘per a elec-
tron is given by

P — 2 B, L ¢
where '
Dy, g2 f + @ gin dp + 20 c08 20+ (1 F g sin 3p) 921, (

X ¢ i8 independent of the elsctric field and th
magnetic field is specified, the quantity Il , define
completely the state of electrons in thesa valley

_ [7] (gee Appendin), ie.,

L ensms(y g, fra=E ), e=(l g (

Yn pasticnlar, we shail assume that > 0.
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(Tq is the intervaliey scattering time for eicctrons
helonging to the valley ¢},

The transverse field E, is obtained trom the
candition that the transverse current vanishes:’

By emiy) —acos 20id, — &,
G Eo— 4 52D, - Gyl
A

. (3

kg

Here, & —=xu, ¥ ==:f§ 4nd we hawe made use
of the condition of detailed balance of imervallev

transitions, whicn implies

Ry =n —v—., It

E follows from Eq. (8) thaz, in general, the trans~
verse field ie u sum of two fields: the true Hail
field. which is represented by the firsi term in the
numerator i Eq, (8),andthe Sasakifield, whichis.
represented by the second term. Equations (6) and
(7; indicate that the Sasaki field also depends on
the magnetic fieic, Even in the case when the two
valleys are symmetric with respect to Ex (¢ = 0)
is zero magnetic {ield, i.e., equaily heated® and
caually popwated, which implics that the Sasaki
field vanishes, i foliows from Eq. (6) that, in an
applied magnetrc f1eld, the heating of the valleys
is different, whichgives rise toa{inite Sasaki field.
The svstem of transcendental eguations (6) and
(8} is a ciosed system which governs the dependences
of I, . and @ on Ey and H. Since all the parametcrs
in the present problem are functions of I, {Eq. (7)],
it is of great interest to inveshigats e dependcence
,48). I follows from Eq. (6) tha! the expression
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Using Eqgs. (11} and {12), we obtain e e ic
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defining the curve H.(Ey) 2iong whicn the + .x
(11) of equal heating of the valleys is satisi -
for an arbitrary angie ¢ ana an ¢ . Zeary - o
ield Ey, there are two «Tilical valuls of W€ nagnei
ic field He 4(Exy), He »(Ex¢y, In which the twa va!-
leys zre equally popuiated [in general, the quaniir,
u/E i Eg, (13) depends on the <lectric icid; i
Ti;(€) = const, then u /u is indepentent oi '~ - .. -
tric field and Hc,: =He g{#}, He o = H_ o(0)). The
vertex of the parabola defined by £q. {10y is fo-
cated at the point

-

Ze A

Gi==cig 28, ; ~ Hojma = Tin 0w E. (245

-
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e

which defines the curve He 5(Ex, ¥} along which tne
suantity IL, -1, is a maximum [as before. fur
31{€) = const, we obtain He ’3(4{’)}.

Therefcre, we have

~}

By i for 958, 0 <6, (16)
fe >, for By, < @< wl, 17

i.e., n che case defined by Eq. (16}, vailey 1 is
hotter than valley 2, and. thercfore, less populated
ny/n, < 1 i the intervalley scattering is dus to
phonons {8, 91 (or ny/n, > 1 if the inlervalley scat-
fering is die to mpuarities {8, 107); in the case de-
finec by Eg. (17, valley 2 is hotier and ny/n. - .
{cz, alternatively, ny/n, < 1}, Since an incr:
the mugnetic ficld always ivads fwith the oxcow.on
Y tu the tra nastinn from the sitgd-
: (28 femall | @) to wat de-
S iy, it foliows @it by
ieid, the magnetic ficld essen-
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(6) and (8) indicate that the reversal of the field

H -~ —H does not change the state of a semiconduc-
tor only in the cases ¢ = 0, 7 /4, whereas for

0 < @< 7/4, the reversal should lead to effects
which are odd with respect to the magnetic field,
It follows from Eq, (8) that ® vanishes if

P, — @,
H=a6052fpm, (18)
i.e., the true Hall field compensates the Sasaki
field,

3. To study the dependence ®(Ey)}, it is con-
venient to write Eq, (8) in the form

08,4, (19)
acos 2¢ ©, — Py
g U4, T e 94 .
@—H®l+¢2' 4= D, 0)

l—asin2?¢]+¢2

We shall assume that 7;; (€) = const, In this case,!
the quantities u, and i, are independent of the
heating, @y = 8¢ = Hiip,, @,/¥,=r1,/r, ,andthe de-
pendence of the tangent of the anisotropy angle on
the electric fleld ®(Ey) {s governed by the depen-
dence of the intervalley scattering time on the pow-
er T(ﬂ). If@o = @1, @z. @s. we find A= 1and ® I8
independent of Ey, In the case of intervalley scat-
tering by phonons, we find dr/dll < 0 and for

80> 81 9:< By 0< B0< B3 (21)
we obtain A = 1, whereas for
8:1< 8,<0.8;<8,< o, (22)

we obtain A <1, Since, for a given lattice temper-
ature T, the dependence Tt (1) follows approxzhmalely
the dependence 7(T) for Ex = 0, it can be deduced

from [8] that, at low temperatures and for pure sam-

ples (such as were studied in [11, 12]), the depen-
dence of the scattering time r({I) on the heating
power is initially strong and then becomes weaker,

Therefore, the quantity b(E,)::':: T ::’ is a non-

monotonic function of Ex, For Ey = 0, we find that
b = 0; with increasing E,, the quantity b increases,
reaches a maximum, and eventually begins to de-
crease, since the dependence of T on the power Il
becomes weaker, Clearly, in the first case [Eq.
(21)), the function |®)(Ey) exhibits o maximum,
whereas in the case defined by Eq, (22), it ex-
hibits a minimum, For ¢ = x/4, the value of ®
corresponding to the maximum (minimum), where
b can be of the order of unity, can be twice (or

MILTIN
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Fig. 2. Qualitative form of the dependence @/(E,) in the case
when the intervalley scattering is due to the emission and ab-
sorption of intervaliey phonons. The straight lines 8y, -8,, 8,
divide the plane 8E, into regions with essentially different de-~:
pendences e (Es); cos 2 ¢ = 1/3,

half) the value corresponding to Ex = 0, Ittﬁe in-
tervalley scattering is due to impurities
(d7/dll > 0), the function | ® |[(E,) should exhibit
a minimum in the case defined by Eq. (21) and a
maximum in the case defined by Eq. {(22). These
extrema are less pronounced than in the scatter-
ing by phonons since the scattering time 7 varies
more slowly as a function of 11, i.e., the straight
lines @, = By, ©,, O, (corresponding to the critical
magnetic fields Hg 4, He ,2» He g) divide the plane
®Ey into regions wlth essentia]ly different depen~
dences |® [(Eyx).

Figure 2 shows qualitatively the dependence
@(Ey) in the case when the intervalley scattering
is due to the emission and absorption of inter-
valley phonons,

Again, we can study the dependence of the
conductivity on the electric field, Therefore, if
in the expression for the current we replace H by @,
we obtatn from Eq. (8) the following expressions:

I, =d'F,, c"==uHB, (23)
8% @, — D2
1__1___..( 1 2
9, 4 & 1 g\ + &
anxen_‘;‘.';’;_‘.!(i{— e B= 8 'l”:~‘1:)' @4
! * i-—-asinhm

I 741(€) = const, the dependence ¢* (Ey) 18 governed
by the dependence of the intervalley scattering time
on the heating, In the case of the phonon interval-
ley scattering and for 8, < @, < 84, we find that

B =1and o*(E,) exhibits a minimum (the mini-

4The subscript zero (for example, g) ndicates that the corre-
sponding quantity {s taken at Eyx = 0.
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mum value can be half that corresponding to Ex = 0);
for ®, > @4, we find that B = 1 and o* (Ey) ex-~
hibits a maximum. In the case ®y < |9, |, the con-
ductivity o* (Ey) reaches a maximum in the region
8y < @,, whereas in the opposite case, it exhibits

a maximum for @, < ~@q, In the region —@g < @; <
@,, the curve ¢*(Ey) exhibits two fhumps," pro-
vided the quantity b is of the order of unity, There-
fore, the dependence o * (Ey) is essentially differ-
ent for different values of the parameter @, (the
critical values are @) = 94, ©,, —8,3).

If the dependences @(E,) and Jy(Ey) are known,
the Hall factor can be calculated, The form of the
dependence of the Hall factor on Ey is also essen-
tially different for different values of the parameter
®,.

4. We have assumed that 7; (¢) = const. How-
ever, in the case when the dependence 7 (1) is strong
compared with all the other functions,

1 dt

T > (25)

1 dp |

A dp | (1dg
p all | '

diil

the situation is quite different. In the region of elec-
tric fields in which condition (25) is satisfied far
from the critical values @ (® = @4, ©,, @), the tan-
gent of the anisotropy angle and the conductivity
are not determined by 7; (€) (which is the usual
situation) but by the dependence of the intervalley
scattering time on the heating power. This con-
clusion can be easily verified in the weak heating
case, In fact, by expanding in terms of a weak fleld
Ey, we obtain from Eqs. (6), (19), (20), (23), and
(24) the following expressions:

2‘p (sm %—-5 s Zv ]}' (26)
=51+ 0 })
{. 4—E3[2®8%+(1 —83)%+aisln‘2’f% J} 27

C=sin 29 -+ 2cos 29 @ o — Sin 29 @ 3.

ad

i =2 =g are taken

The derivatives ’==—'T B=gm
at EX =0,

Equations (26) and (27) indicate that, far from
the critical values of ® {8) = 8, &,, 04 are zeros
of the coefficients at #'/®, in Eqs. (26) and (27)],
when Eq, (25) is satisfied, we find that @(E,) and
o* (Ey) are governed by the dependence 7(lI). For
71 < 0 and in the case defined by Eq, (21), we ob-
tain d |© | /dE2 > 0, whereas (n the case defined
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by Eq. (22), we obtain d| @ | /dEL < 0; the quantity
da"‘/d}?.x is positive if condition (17) is satisfied
and negative if condition (16) holds,

']‘he mugm,torwistanu, cin ‘»b Ld.l(‘llldi.(_‘d unly

me,Lhamsm is specitied, Neg, Ltn nagnetoresis-
tance in weak magnetic fields wag reported in [1-3],

We shall show that the magnetoresistance in strong
magnetic fields can become uegative if the strong
inequality (25) is satisfied. For simplicity, we

shall consider the case ¢ = 7 /4 und the electric

fields in which the quantity b reaches a maximum,

i.e., is of the order of unity, For a = 1/2, we b~

tain

where Ap' /p} is the positive magnetoresistince
(neglecting the intexrvalley transfer), which is usu-
ally smaller than unity,

As already discussed, the special features of
the Hall effect in many-valley semiconductors
manifest themselves if condition (25) is satisricd,
which is usuully realized at low temperatures and
for sufficiently pure samples, Our results are in
agreement with the experimental data {12] obtained
at 77°K for ¢ = 0. In fact, it follows from Egs. (19)
and (23) that there is only one type of depen-
dence of the 11all coefficient, L.e., R(E;) exhibits a
maximum (in this special case, we find @4 = B¢ = «,
8, = Unfortunately, the measurementb of the
Hall effect for an arbitrary angle, when effects odd
in H should occur, are not available, They are not
even avaflable for ¥ 11{110), when the odd cftec 3&4
do not occur, and standard measurement techniques
can be used (it should be noted that, for ¢ = 0,

T /4, the two measurements carried out during the
magnetic field reversal cannot be averaged), and
the change from curves @(Ey), o*(Ey), R(Ey) with
minima to curves with maxima cccurs in the range
of moderate magnetic fields which can be achieved
experimentally.

The author is grateful to Z, S, Gribnikov for
his supervision and to I. M. Dykmar for his inter-
est in the prc3ent work and helpful discussions.

APPE NDIX

— ao)

If the intervalley scattering time is consider-
ably longer than all the intravalley scattering times,
the transport equations for electrons from differ -
ent valleys*

‘Publlshéx ‘tnote: [a b] meansa Xb,
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1 a
»---e(E,-—{»— ?[\Hl,)m F;:)=]Fs‘) : (1’\.1)

equations in the first and in the second valleys
differ only in the factor . Consequently, for a

given magnetic field H, the quantity Hily deter -
differ only in the field terms, In the quasielastic mines completely the distribution function Fy(@)
approximation, we obtain Fp = F¥ + F~ ~ Fg +viFi, Fydl,), and, thevefore, all the transport coeffi-
where F~ « Ft are, respectively, the even and the cients [Eq. (D). ~

odd parts (with respect to the momentum) of the
distribution function, Introducing the momentum
relaxation time tensor and assuming that ELH, we

obtain. in the system of the principal axes of the

mass ellipsoid the following expression: 1.

£ g 1 2.
P | o - 3’+ Mei e Exmy s
LIRS 1T e2 1, T, p T ‘ ¢
» 1+c—2"f—2[ﬂiﬁ+(ﬂﬁ+!1§)#] a2 g,
. @) ' . 4.
The equation for F§~/ has the form 5
L7 oF, g
., D B o G2 6.
el : =fF{®
SERArD e? Tog [ o %Tas 2 2 'cu] !
q—2m2 [Hl my '*'(H?."*' Ha) my ) (IX.B) 7.
where

HAS =Z fF““’a(E —ep) e E Is (e —e)) F,
7 ) 9.

In the case considered, i.e., when H is paral-
lel to the valley symmetry axis for 744(€)/ T (€) = 10.

const [in this case, Eq. (4) implies that a = const], *
we obtain from Eq. (A.3)
11.
- T S ‘
. -} 8850

22 (f”)‘s 0 FEM, = FF§. (A4)
87 o 162 %, To2 *

Py aE Ay By

, 12,

Here, II, are also given by Eq. (6) and (t/m)jg =
(1/3)[(T43/my + 2(Ty /my)], i.e., the transport
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