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The existence of several stable nonequilibrium distributions of the electrons in the valleys turns out
to be possible in the case of a rapid decrease of the intervalley transition time with an increase of the
" heating electric field in many-valley semiconductors in a certain range of electric field strengths;
these correspond to different values of the conductivity tensor of the semiconductor —the multivalued
Sasaki effect. In this connection it turns out that when the direction of the current is along the princi-
pal axes, relative to which the valleys are equivalenily arranged (for example, the {100} axis in ger-
manium or the [111] axis in silicon), the state with the highest symmetry, in which all of the valleys
are identically papulated, is unstable, but states having a preferential population of one of the valleys
are-stable, In connection with a variation of the electric field, two types of transitions are possible
from isotropic or stightly anisotropic states to strongly anisotropic states: 1) gradual transitions,
2) abrupt transitions. In the latter case of an abrupt transition the current through the sample changes
and current hysteresis exists in a certain range of the field strengths. A magnetic field may stimulate
abrupt transitions (jumps) from one stable state to another; here the transverse e.m.f, in the crystal
is changed by the jump. The two-valley model (which can be realized in germanium by achieving the
regime of short-circuiting along the [ 001] direction) is analyzed In detail in this work, and also re--
sults are presented for germanium when the current is directed along the {100} and [110] axes, and
for silicon when the current is along the [111] axis, The estimates which are made indicate that the
multivalued sasaki effect should sccur in pure germanium at low temperatures,

INTRODUCTION

A heating electric field destroys the eguilibrium
distribution of the electrans with respect to the equiva-
lent valleys in a many-valley semiconductor, leading to
a new distribution:

nu=t.n/§;t. (1)

(here n denotes the total concentration of etectrons,
Ta 18 the time for the drift of an electron from the val-
ley labelled a —an a-electron—~to any other valley).

-The Zdifferent values of 74, leading to unequal values of

ny , are associated with the different values of the mo-
bility tensors ui’’ and consequently with unequal heat-
ing of the electrons from different valleys, The latier
property is responsibie for the appearance in heating
fields of an anisotropy in the electrical conductivity of
homogeneous cubic many-valley semiconductors—the
Sasaki effect (see the review article!!} where a 115t of
literature references is given).

In order to obtain the maximum repopulation of the
electrons, other conditions being equal, the following
are required: in the first place, the maximum sharp
monotonic dependence of Ty on the heating power, and
in the second place, the absence of energy exchange be-
tween the valleys (independent energy balance of the
valleys). The second requirement is satisfied if the
times 74 substantially exceed the intravalley energy
relaxation times of the electrons and provided that there
is no intensive electron-electron exchange of energy
between valleys during collisions without intervalley
transitions.

In the majority of situations the Sasaki effect is
single-valued, that is, for a given orientation of the

sample, to each value of the applied electric field there
correspoinds a unigue redistribution of the electrons be-
tween the valleys and, thus, a unigue magnitude and di-
rection of the transverse (anisotropic) electric field,
However, situations are possible when in a certain
range of applied electric field strengths the Sasaki ef-
fect is not single-valued, that is, several stationary
distributions ny appear. It was first possible to per-
ceive this from figures representing the results of nu-
merical calculations in %1, Shyam and Kroemer!3?
cailad attention to this possibility, which indicated the
identical nature of the multivalued SBasaki effect and the
negative transverse differential conductivity observed
in 147 (see also the review article '*1),

The possibility of a2 muitivalued Sasaki effect is com-
pletely related to the existence of a transverse (aniso-
tropic) electric field. If a transverse current is nat
present, then this field as a whole does not do any work.
However, owing to the preseace of transverse currents
of electrons in different valleys, the transverse field
transfers the energy of the electrons from one valley to
the others; the energy transfer due to the dependence
Tel€) leads to 1 redistribution of the carriers,

A detailed qualitative theory of the multivalued 8a-
saki effeet is developed below. The simplest two-valley
model is considered in Sec. 1; in Sec. 2 the stability of
the stationary distributions obtained in Sec, 1 is8 inves~
tigated; the influence of a magnetic field (the Hall ef-
fect) is considered tn Sec. 3 under the conditions for -
the multivalued Sasaki effect; Sec. 4 i8 devoted to the
multivalued Sasaki effect in actual energy structures of
the type n-Ge and n-8i; estimates of the dependence of
To On the heating power are made in Sec, 5, making it
possible to reach conclusions about certain real experi-
mental sjtuations,
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F1G. 1. Two-valley modet.

1. DISTRIBUTION OF THE ELECTRONS IN THE
VALLEYS IN A TWO-VALLEY SEMICONDUCTOR

Let us consider a two-valley semiconductor with the
valleys, lying in the xy plane along mutually perpendic -
ular axes, arbitrarily oriented relative to the x axis,
which is chosen along the direction of current flow in
the sample {see Fig. 1):

‘::9. . (2)

In particular, this situation is realized in n-Ge if the

z axis coincides with one of the fourth-order axes and
if the short-circuiting regime is realized in the direc-
tion of this axis (for example, if the size of the sample
in the 2z direction greatly exceeds the size in the x di-
rection' ). (In passing we note that if a short-circuiting
regime exists in the y or 2z direction, then the effect
we are interested in will not exist: for all values of Ey
and ¢ the unique distribution of the electrons between
the valleys {8 always stable.)

Let us assume that independent energy balance of
the valleys, which was mentioned in the Introduction, is
realized. Then the average power absorbed by a single
electron in the field B,

P = LE/m, (3)
completely determines? the distribution function of the

a -electrons and consequently all of their parameters:
the drift time

Yo == T{Pu) 4)

and the principal values of the mchility tensor
o= p(pus) (1 F a cos 29),
P == p(pss) (4 3 g cos 29),
Bt te 8o T ap(pri)sin 26,

where the angle ¢ is defined In Fig. 1: 0 = ¢ = 7/2,
0 <a <1, (In the general case the anisoiropy parame-
ter a also depends on p, ,; however if a single scat-
tering mechanism dominates for all values of p or if
mechanisms having identical anisotropies of their re-
laxation times give comparable eontributions, then a
ceases to depend on p.) Let us introduce the angle of
anisotropy 8:

(5)

‘:{ge =8 E,IE:;
then from Egs. (3) and (5) it follows that

(6)

DIn this connection, however, the danger arises of a decomposition
of the sample in the z direction into domains having fields E, which are
different in magnitude and oppositely directed.

D1t js assumed that in each valley the distributién function is close
to its isotropic component.
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The parameters [I,,,, just like p, , (within the limits
of a single-valued relation between 1 and p) complete-
ly determine 1, , and p'!'*. Determining the field Ey
from the condition (2), we obtain the following trans-
cendental equation for 6:

O{E. sec’0[1—acos2(¢ — 0)]} _ asin(2p—8)+sin8

@ {E sec'8{1 + acos 2(9 — 8)]}  asin(2p —0)—sind '
where o{n} = () p(n).

One can reach certain conclusions about the roots of

Eq. (8) without specifying the form of &{ii}. For this
purpose let us rewrite Eq. (8) in the form

M)~ @) sind

., ==

== E.' 500’ 6[1 F acos 2(9 —6) ]. N

(8)

®(l)+ ®()  sin(2¢ —0) ().
and let us investigate this eguation.
1. A root of Eq. (8) occurs only in the interval
(0,, 8,), where
10, = 20 29 ©)

{1 +'acos 29 ' .
this follows from the fact that the left-hand side of

" Eq. (8'), L{3), lies within the limits —-a < L(4) < a;

here the guantity ¢ = tan 8 has been introduced.
2, It is easy to verify that

B{E @) = —8(E), n/2—q); (10)

from here it follows that it is sufficient to consider the
interval 0 < ¢ = w/4.

3. If {1} is a monotonic function of H, then L(#)
is a monotonic function of # in the interval (tan 6,,
tan 8,); this follows from the fact that 1,(4) has a mini-
mum at § =ian ¢,, and [1,{#) has a minimum at o
¢ =tan 6, (R(#) = - N3 /). H #N') is a monptonically
increasing function, then L(#) decreases monotonically
in the indicated interval, and since the right-hand side
of Eq. (#), R(#), increases monotonically in this inter-
val from —a to a, there is a single root of Eq. (8) (see
Fig. 2a, curve 1’). However, f ®(11) i8 2 monotonically
decreasing function, then L(4) monotonically increases
in the interval (tan 8,, tan @,), so that the number of
roots of Eq. (8) can be expressed in general as an odd
number greater than unity.

4. If #(I1) i® a monotonically increasing function,
then the anly root of (8) is negative for @ < n/4, equal
to zero for ¢ = n/4, and positive for ¢ > /4 (this fol-
lows from the fact that R{0) =0 and L(¢) =0 for
0 = ¢ — (n/4)). Thus, in the case of the *‘anomalous’’

LR LR
a

7 4

-a -a

‘i ]

|
|
f
{
|
|
)

1
o, ey Y ] 7
FIG. 2. Dependence of the left-hand (L) and right-hand (R) sides of

. Eq.(8)on ¢ for ¢ = #/4 and for different values of Ey.
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Sakata effect!®) there exists a unique and, as shown be-
low (Sec. 3), stable solution of Eq. (8).

Let us return to the case of a monotonically decreas-
ing @(11): &'(I1) = d®/dll < 0 (which corresponds to the
‘“‘normal’’ Sasaki effect). Let us consider the cases
¢ = 5/4 and ¢ < 7/4 separately. ,

1) ¢ =1u/4 (Fig. 2). In this case R(s) = ¢, L(0) =0
so that the root is always ¢ =0, which is an inflection
point of L(#). The condition for the tangency of L(+)
and R(s) at ¢ =0, '

— WENV /D), = 1,

determines a certain critical field E; at which a

change in the number of solutions of Eq. (8) by two

oceurs. Two types of these changes are possible,
Type [ occurs for

AE)=[(@)'—~ OO + 2WEHO" - G"/3) Jamr, <0, (12)

when at the point 4 =0 the curvature of L(#) changes
from positive for ¢ < 0 to ..egative for ¢ > 0 (Fig. 2a).
In this case for

1)

— W EMNV /) a1 (13)

two more solutions of Eq. (8), #-) = ¢, (0(~) =—0(,))
supplement the solution ¢ =0 in the neighborhood of
this point, where these solutions are not present for

—~ WEND/®)pu, < 1. (14)

We have the following expressions for these roots for
small deviations of |Ex|.trom E, (as long as |4| << a)

8l = R(E) (|E.] — E.), (15)
where
207 (E2) (o (B ) + £, (da/dMn-g s
R(E)= — A (Ec) Ecs » (18)
a= Q@ /P
Type H occurs for
A(E) > 0. {12)

when at the point ¢ =0 the eurvature of L(#) changes
from negative (for & < 0) to positive (Fig. 2b). In this
case for field strengths close to E;, one solution ex-
ists in the vicinity of the point ¢ = 0 if (13) is fulfilled,
and three solutions exjst if (14) is satisfied.

For the actual dependences of # on II, several so-
lutions of Eq. (11) exist, that is, several critical fields.
We shall call the one for which

a(ll) + 028 >0,
e

i (n
the lower critieal field E‘é ’, and the field for which the
opposite inequality (opposite to (17)) holds will be
called tiic higher.critical field ES, As long as one ex-
cludes the situation when there are no eritical fields at
ali, i.e,, the case when Eq. (1) does not have any solu~
tions, then the simplest and most realistic situation is
the case when ondy two critical fields exist—one lower
and one u;‘:per , and also, as it is not difficult to verify,
Ef > EY) (here the case of such idealized depend-
ences ${(f1) for which only one critical field EY’ exists
is included because one can assume EWV — ) We
shall only discuss this situation. The &llowing special
cases are possible,

a) The point ¢ = 0 is the only inflection point for
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7
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FIG. 3. Passible dependences of 8
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L{s), where A(Ex) <0 everywhere (Fig. 2a). Then for
both critical fields there is a change of the number of
solutions of type I, and the dependence ¢(|Exl) has the
form shown in Fig. 3a. ‘

b) In addition to the inflection point associated with
4 =0 there are two more inflection points, where A(Ey)
> 0 everywhere (Fig. 2b). In this ease at both critical
fields a change in the number of solutions of type I oc-

curs, and in addition to the critical fields ES»M two
more characteristie fields E‘]g'h' exist, in which the
number of solutions changes by 4, where necessarily

Ef < E:,:" < E‘ch’ < Eg“. The dependence of ¢ on

|Ex| for this case is shown in Fig. 3b. ,
¢) The sign of A(Ex) changes with increasing mag-
nitude of the field Ex so that the signs of A(EY’) und
A(Eg") do not agree. In this connection the dependences
have the ‘“composite’” form shown in Figs. 3c and 3d.

It is also necessary to include among the actual situ-
atjons those such that (for A(Ex) > 0 and in the pres-
ence of three inflection points) no critical fields of the
type Eo exidt inside the interval of field strengths

(Eg’ R Eg“ ), t.e., Eq. (11) does not have any solutions.

The case is illustrated in Fig. 3e. The situations shown
in Figs. 3a-3e completely exhaust all possible forms of
the dependence of 4 on Ex (except for trivial caseg)
under the assumption that the dependence L($) is given
only by curves of the type shown in Figs. 2a and 2b, and
under the assumption that the number of critical fields
E. does not exceed two. For more complicated depend-
ences L(¢#) even richer #(Ey) can be obtained; however,
it is necessary to attribute them to unrealistic situa-
tions. . '

From Fig. 3 it is clear that even in the simple situ-
ations under consideration, up to five different sta-
tionary values of 3(Ey) may exist. As is shown in Sec. 2,
in sufficiently thick samples and under the assumption
that p(f1) does not fall off faster than M~*/? with in~
creasing II, then those solutions for which -

are stable with respect to quasineutral perturbations,
where Qg,(s) denotes the angle of inclination of L(s) to
the axis of abscissas, and QR(#) denotes the angle of
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inclination of R(#). On Fig. 3 and everywhere in what
follows below, the solutions which are stable in the
sense of the criterion (18) are plotted as solid lines,
and the unstable solutions are plotted as dotted lines.
Thus, in the interval of field strengths (E¥’, Eh) the
solution ¢ =0, corresponding to the state with uniform-
1y populated valleys, is always unstable, but anisotropic
states having a preferential population of one of the
valleys are stable. In the case indicated in Fig. 3a
(henceforth referred to simply as case a), the transi-
tion from the isotropic state to an anisotropic state oc-
curs continuously: the angle 6 increases smoothly
from zero. In cases b, ¢, and d the transitions occur
abrupily, where the sudden establishment (or disap-
pearance) of the anisotropic state is accompanied by a
sudden change in the current through the sample (and
also by a sudden change of certain other properties of
the sample). In the intervals of field strengths (E‘cl’,

E‘ll)’) and {or) (E‘g" , E‘S') there exists hysteresis of
the current and in the anisotropy angle ¢ as functions
of the field |Eg|; thus, in cases ¢ and d there should
be single-valued hysteresis and in case b a twofold
hysteresis on the current-voltage characteristics (IVC).
It 15 not difficult to investigate the IVC of a sample

near the points E‘CI ) and E‘Ch’ in case a (and near the
points associated with a change in the number of solu-
“tions of type I in cases ¢ and d) when the angle 6 is
changing continuously. For arbitrary values of ¢ the
IVC is given by the formula

_ b __ (L) +®(I1,)
1= eEn (1 : m) =y 19
For ¢ = #/4 near the critical field strengths
J—-1. 1t 14dp : o
e _H( dE,) s,=z,_H(E“)] (E.—E.); J,—-J(E(,%b)

if the coefficient inside the square brackets is negative,
then a region of negative conductivity is formed near
the point E¢ (for Ey > E‘Cl’ or (and) for Ex < EZ"),
and the formation of this region may be associated with
the appearance of an additional instability which is not
considered here. The region of negative conductivity ap-
‘appears for sufficiently large values of a and apparent-
ly occurs in a small (in comparison with Eg’) interval
of field strengths. (For example, for &(I1) ~ exp—~y Il
and for an unessential dependence of U on I, this re-
gion appears near E%? =1/av2y for 6a®> 1.)

2) @ < n/4 (Fig. 4). In this case, as before R(0) =0,
but {tan &]>tan 6, and L(#) =0 for 6=~ p =—(n/4)
+ @. Therefore negative roots of Eq. (8) are conceivable
only for ¢, < — ¢, i.e., in the following range of the
angles @:

nld-—-arctga<op<nld (21)

(The regions correspounding to the possible roots of
FEq. (8) for ¢’ <0 and for &' > 0 are indicated below
on Fig. 6.) If L(s) has a single inflection point corre-
gponding to a change of the curvature with increasing ¢
from positive to negative (Fig. 4a), then the existence
of a region of field strengths (E(cl’ (), EEY(#)) is possi-
ble in which Eq. (8) has two ‘‘unusual’’ negative roots
3¢ < 9“3; (of which only 6'!) is stable) in addition to
the *‘usual” positive root 6, ,. The interval (EL(3),
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EM(4)) lies inside the interval (E$’, E$V) considered
above. The qualitative dependence of 3(Ey) for this
case is shown in Fig. 5a,and a chart of the roots 6(¢)
for different values of Ex is shown in Fig. 6a. The part
of this chart for which the conditions

141, 18] <a, (22)
are satisfied can be calculated by solving the cubic
equation:

A0* -+ BB - Cp = 0, (23)

which approximately represents Eq. (8) upon fulfillment
of the conditions (22); here A is determined by formu-
la (12): ) '

O’
=

a

P’ O
B - —. — —
. llei \1 + 2‘1!E,21D' )7

where the function ® and its derivatives are evaluated
at the point 11 = EZ. The condition for the existence of
three real roots has the form

B AC: < — T/, (24)
For y =0 this condition takes the form (13) if A <0,
and it takes the form (14) if A > 0.

If L(#) has three inflection points (see Fig. 4b) then,
as is indicated in Fig. ¢b and Fig. 6b, the interval be-
tween the critical fields E::b(w) and E‘Ch’(zp) is expanded
in comparison with the case ¢ = 0 (this is %vident from
inequality (24) for A > (). The fields E{)l’ ' are now
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FIG 6. Dependunces ol thie atisotropy angle B on g fos dilerent
values o1 by,

diffecent for the positive and negative roots, where

) £ ) BB 5 (8 (4 £ ).
The interinediute situaticns correspondiog to cases.
3r-3e for ¢ =7/4 areindicared, respectively, by
Figs, Sc-5e.

I'he value of the stationary values of & makes it
possible to cateulate the vatues of U, fiom formdas
"1y, and trown these wne can deterigine il paraweters
of the valleys, including «(H ;) and el L)

2. STABILITY OF STATIONARY TWO- VALLEY
DISTRIBUTIONS WITH RESPECT TO SMALL
QUASINEUTRAL PERTURBATIONS

I Sec. 1 some of Lthe obtained stationary distribu-
tions were called stable, and the others were called uin-
stable. On Figs, 3, 9, and 6 the siable values of the
aniscropy angle # are indicated by solid lises, and the
unstable vulues by dotied lines. L all of these cases oue
has in mind stability {(or instability) with resgect to
small guismeutral redistributions of the carviers rela-
tive to the stativnary distributions, whoze Fourier com -

ponents we denote by
= vih).

Sl = —dmik) (25)

The time evolution of v{k) tand also tihe frerd & (k) and
the varrents i, Ak} in each ol the vaileys associated

with these deviutions) is deterinined by the toliowing
equutions:
it L &f =, {26)
o T F U B '»:f (0 = 12) 1§ dav, (2n
1
Boee (8 4 Foa) g vE L i k], 128)

where 3, , LR D, ., Dy, ure the coefticiens of

the difivilon tensor; y,y , and k&, , are determinad by
the eruations 5ptezh 2 By e BTy ) = it
Since £ and ry,z are entively deternained by the
quanfiies i, 5, then

==L, OFL 2, Mo =+ gn‘\“ N (ZJ)
where
!_(‘lu"‘”' t e - iy g,
> l""n“lxa s iy’

and also from kqs. (7) and (3)
s A0y (30

Lt ug assume tohat the ficld Eyx is stringently given,
1.,

gttt C.;”;,A"t‘)“:.zil—i(‘ Al
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&, om0, (1)

(4 the vase of a negative differeantial resistivity when a
doronin tistabiity of the Held Ry may uctur, condiiu
(31) iy not be ulfilledd.y T the pr esaice of conditiorn
1) by =0 and §y - 1y Fiom expressions (28)
through (30) we obtain the egaations wiich determine

O ;5 and o' = il oony) Dy
_ Dok - Gt b aghl s s, (34
ugth (!,‘L‘

. Mt - cr ™ of).
1wty ) ! (£ thite x.,dh f (’1\"1 ) ’

g SR e

( 4 1 1% s,

v ( 'l‘u;‘l’ u.;..‘b u.d“l' ip, }

- i i by .
(1‘ 4-n, i(u lll, + @ d)))

i,
[Q 1__‘_7_.;(u‘;1,‘ 4w lou, - I 4 ‘--((mb Tt -D.)lbu

1hi A
't g, ll' 1 m‘l’

3)

xh b 3 -bn bt «1! .
1 l 1o ﬁ ﬁ L (u.‘u‘ Faadn,) - -ﬁ ‘S end I‘ e ‘ EES VY
45 ‘, oy Pl . ;i e -~ ﬁ a ! °
whure
i 1.3y
0o T H M r,
Te == B g N P - i Mo S 3 n* p "p - f ﬁ‘ - (i‘”
(TR . M"" Ry _}, i

Seltiug the delerminant ot Egs. (32) -(34) equal to Lo
determimnes wik), and dlsu the guaniity of wierest o as,
Ioy w, is oblained u e torm

bk
) tmw{k) = - e KRy
(k) H : )
) &, b, W, dds,
where L I T ol e - b =
CUUh an tw, g b ek,
B W bt Lol fa, boa,
= p( Vb 4 “i"l-,':';““ SR e "‘{"S’I ¢
, 2. “

Lot SO, Ly
Lifive, 1" [

Dy,
B == tQ, 4 [, ‘*""(\Zx‘l’

A
4

+oasby

The condition tm wik) < 0, whose futfilin:ent is peces-
sary for swability of the stationary \ulutlusm kas the
furm

B+ By B, 136}
First let us consider the gpecial case when g does

ot deperdt on (L, =&, = 0). Then in B, aud B, there is

only a single term, wta-h is actually positive, which

survives, and condpion (36) reduces Lo

SIS [

B, T k“' 3%

1t 1s not difficuit to see that

B, SEB O, . {34}
where {&), I3 ihe anyle ol im' tation of the lett-haud
side ul Py, (&) and f2 16 the wagle of iachination ol itu

vight-haad swde o the axis of abscissas on Uips. 2 and 4

at the point of infersection of L und fi. in bg. (34) the
vight -band side has @ maximem a0 €2 =0; thus, in very

thick saupples the criverion for stability {37) 1 cainces
the coi:dition (14d).

In thin sampies, where a inhwam value k3, .,
~ [/d* exists td deuotes tile thickness), condition (37)
remices to

Py S L
W de)feas uja

C@res2g) (bt

tafd,

— gty T

so that the solutions corresponding to coevtiain parts of
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the ‘‘dotted’’ sections on Figs. 3, 5, and 6 adjoinug the
‘‘solid’’ sections become stable. As is evident fromn ex-
pression (39), the characteristic length with which cne
must compare d is the length for intervalley scatter -
ing, @ =vD7, so that criterion (18) is valid for
d>> 2. L

If the mobility depends on Il, then a new situation
arises only in the case when y decreases with heating
(¢4, < 0). We note that for

®y 4] -

vty <t (40)
where : -

2x2 s Lo
Yio=1+ Liss ,m“—%—ﬂl——-—, e == 4 — %,
u._.d’f,z . ")IT':-+’ ﬁle

B, becomes negative, and for

¥ 0, + a.¥V.: D, <0 (41)

B, is negative.

If B;, B, < 0, then just as in the case ¢, £, = 0) the
right-hand side of Eq. (35) has a maximum for k® =0,
and the criterion for the stability of the stationary solu-
tions in thick samples has the form of the inequality op-
posite to (18), i.e., the solutions corresponding to the
dotted sections on Figs. 3, 5, and 6 are stable, and the
solutions corresponding to the solid sections are un-
stable, ’

if the quantities B, and B, have opposite signs, then
for large values of k* the right-hand side of (35) may
become positive for all reasonable values of B, so that
all stationary solutions found in Sec. 1 (both the ones
corresponding to solid lines as well as the ones corre- -
sponding to dotted lines) are unstable, Apparently in
this case the stable stationary distributions are inhomo-
geneous in vy,

Let us consider the signs of B, and B, associated
with ¢ =7/4 for the trivial solution 6= 0. In this con-
nection I, ¢, =M,&, = ~m (in the case of a4 power-law
dependence of u on Il one has u ~ II"™), and the cri-
teria (40) and (41) have, respectively, the forms

1< 2a’m << 2,
2a'm > 1.

(40”)
(417)

Thus, for -a*m > 1 the quantities B, and B, have oppo-
site signs whereas upon fulfillment of (40') both of these
quantities are negative. We note that condition (41’)
means that p(Ey) must decrease with the field more
rapidly than E;{‘ so that in this connection negative dif-
ferential conductivity of the sample will exist. Thus,
our analysis breaks a..wn only in the case B, B, > 0.

3. THE HALL EFFECT UNDER THE CONDITIONS
FOR THE MULTIVALUED SASAKI EFFECT
(TWO-VALLEY MODEL)

If in our arrangement it were possible to continuous-
ly vary the angle ¢ near the value 7/4, then as it is not
difficult to see from Fig. 6 the dependence of E, on ¢
would have the form of une of the curves shown'in
Fig. 7. It is possible to obtain a similar posgibility with
a known approximation by using a magnetic field di-
rected alung the z axis (H, =H). Such a magnetic field,
as long as it s small, leads to a small Hall e.io.f.,
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_FIG. 7. Possible dependences of the transverse field Ey on the Hall
angle Yy fory = w/4.

which is superimposed on the Sasaki e.m.f. However,
with an increase of H in one of the directions up to a
certain critical value, a jump occurs from one stable
Sasaki state to another, which becomes apparent in a
discontinuous increase of the Hall e.an.f.

Without specifying the form of ®(I) one can compute
the value of the critical angle only near the critical field
Ec. Ina small (in the sense of the magnitude of the Hall
angle in each of the valleys) magnetic field Eq, (8) is
replaced by the equation

S{E,’ sec’8[1 —acos2(9-—0)]}  asin(2¢ — B)—F 3in B — vﬁcus 8
D{E. sec’6[1 +acos2(p—08)]}  asin(2p —8)—sind + ¢YYoos b
{(42)
where ® = n(1 — AH?)7, A denotes the coefficient of
magneto-conductivity, pifr?’ = Py, ) = py, H
are the Hall angles in each of the valleys, For ¢ =n/4
and | 0] << a the angle 6 is determined by Eq. (23), in
which it is necessary to replace ¢ by yy. The condi-
tion

($n)ar* =

o~ B — £
274C* Pl — £

(43)
determines the critical value of the magnetic field, at
which the field E; changes discontinuously. In the case
A <0 (Fig. Ta) the angle (¥ ), which is determined
by condition (43), qualitatively completely characterizes
the behavior of a’semiconductor in a magnetic field.
For A >0 with the.aid of (43) one can only find the
magnetic field determining the transitions from states
with small 6 to states with large ¢ (Fig. 7Tb), so that a
complete qualitative picture can be obtained only for
specific dependences ®(I1).

One may obtain analogous discontinuous transitions
between the stable Sasaki states by deforming the semi-
cohductor in such a manner that an energy gap appears
between the bottom of the first and the bottom of the
second valleys,

4, DISTRIBUTION OF THE ELECTRONS OVER THE
VALLEYS IN"n-Ge AND n-Si

In a real, many-valley cubic crystal, the sample of
which is cut out such that
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(44)

both comgaonenis of 'L trunsverse field, ¥ \' and iy,
will generailly be diffierent fronm zers, ln addition, in the
general case it is vecessury Lo deul with wnre than two
vallcys: with four velleys in germaniuin ana with three
pairs (each of the paiis may be considered as a single
vatley) wi silicon. Therefore a complete analysis of the
intervaliey redistribution, similar io the one carried
out in Secs. 1 and 2 for the two-vialley model, becomes
ditficult. Here we confine our attention Lo only the
ciases when in n-Ge the carrent is directed along the
crystallographic axes of fourth and scecond orders, aud
also the case whén the current is alung the axis of
thwd—ox der in n-di.

G:pnx_x;}’ug}p, ]_1()01 direction. Let us line up the
air e(‘lmn of the % axis with the fl()b] direction; aud the
y and z axes with the lwo other directions of the fourth -
crder axes ((010), 1001 )) 50 that the nobnlity tensors of
the electrons in each of the tour valleys turn out to be
the following:¥

i t a a '
o ! i {49)
Fagsa o Hizss) 3 L
_a Ta i i
1
4_

where (the choice of signs frowe above downwards cor-
responds to the indices 1, 2, 3, 4)

2H
jpoE= I e

raae = U ssn),
Mo #i 3.} 3

py L) and uy ({1) are the iongitudinal and transverse
mobilities in the valley, and just as in See, 1 it is as-
sumed that a does wot depend on i, = Py/euy (0<a
<) We note thut in n-Ge a is always cluse to ¥,

From conditions (44) it foilows (hat
K | ok.K. Kk ek K o
Coam Y 3
£, ah‘1~ul\ k. Uk (16)

where

ils, ‘ (L, —- gy, — b,

T, 40§ W, b,

K=K 3’3; Ky= K, a; 3} 25 45 before by = Ty ey,
and also ¢y - $lUy), where

J QR SR

F"‘IZ 4 I'{:‘t L ggl_i_t_ | . (40‘)

“Lv::).l == b‘,c“ A i

The unknown values of Ly and £, are deterniined froin

' Eqgs. (46). There are three types of solutions forc these
equations: :
a) e trivial soluticn:
) Y | T YA IR S l-l),‘ (48)
by fuurtold degenerate soluwtions of the iwo-valley
type.
1, cpalK|, om0 (1= S ML =1,
Vhs ke palhy, Bt (L HLs =), (9)

¢) fourfold degenerate solutions of the tour -valley
type:

b ln h,Il yaing numbenng is adopted for the valleys 1 [ 2

TVIUE 3 piby 4 1y

“theén the direction of the v

GEMICONGUCTOKS
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L2 E, =k 20 (=0 =, = 00,
340 E o= B, 0 (ML M == 124, (30)

inurder to investigaie the conditivns for the origiu of
distrivetions of a nontrivial type, let Jds ansuiue that the
aunisotropic component of the field is small:

Elam b K B0 (51)
Then from (46) for 9% = B/
{16))

Ef we hiave (compar e with

o == RS (1B BT,

where as belore k. is determined by by, (11); in the
case of the solutions of two -vdlley type it 1s necessary
1o use the cocfficient Ry(E¢) given by the right -haud
stde of Eq. (16), and in the case of solutions of the fowr -
valley type—-lie coetficient K, (k) which differs frun
R,(#¢) by the replucement in the denowinator of AiEe)
by .
ANEY = @) {4 Dednyt o} atf

= (70 (e

(94)
It is not ditficull to see hat the sign of AYF), which
determines the behavior of the four-valley solutions,
may differ trom the sign of A(kK.). For exauple, for
P~ exp -yt we have A(h’“’) = =% % exp (—27il) but
A“(E‘l’) =P (1w u)® - Y] exp (- Ayl[() i.e., A% > U for
a > (2N3)-1.

In we plane of |9 and Fy the two-valley and four-
valh-.y type solutions age given by curves which start at
the puini (0 E‘l'] aud end ut the point {U, E‘l”] simi
lat L3 one of the pruphs in the apper biaf- plam in Figs.

3a-3e &dechdlhb on the signs of a(EsH Py and
A‘”Ld' l)))

The aaalysis, which is stwilar to the one carried oul
in Sec. 2, shows that in thick samples {dy, dy 2> 7
the sotutions of two-valley lype ave ulways unstable, and
the trivial solaticn is unstale in the region of field
streangths (I“l’, ‘h‘) and stable outside of this nnerval,
As far as the solutions of the four-valley type are con-
cerned, they behave like the aniscropie solutions in the
two-valley wodel, i.e., the states huving the largest val-
uwes of ¥ ave »table, thuse which tre represenled Ly
solid lines in Fig. 3.

2, Gerimaunium, [110] d)r_i:cﬁqu. 1l is precisely this
situation which was considered in 133, L.l us keep
whe z axis, as befure, directed along the {01} axis;
axis is liited up with the
{110 direction, From symwetry consiaeradisons it fui-

— b’ ‘3) ,“

tows that
E, == ’ (341
go that, having intvoduced the notindon K, by - tan o
4, we have
It =l b sec 1),
R JLNUC T BRI (55)
since i the xz pane we have
b ey I juy
Sx ' T . 56 )
oot e Laye t e l""\ U l' (56)

The stattotary values of ¢ are determined fconm the

viquation
Uy dady

Wy 0,
Myiboy i) ’l'll! )
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which has, in addition to the trivial solution of two-
valley type ¢ =0 (It, = II, <1l =11,), doubly degenerate
solutions of the four-yalley type: 8., = —¢,. The
critical fields E‘cl Y , determining the instability region
of the trivial solutxon, are found from the condition

" (l){lz (1 -l»a)}

57)
T b(ET —ay} ' (57)

satB: (2 =1
( )u»-el (1--a)
which is the analog of condition (11).
If the dependence of 9& on | kx| near the critical
field is written in the form (15), then we have the fol-
lowing expression for R(E):

’N’Ui (1 ay o+ B {ENL - @} P (B 4+ Eddan/dEY e, — ¢,

W)= — = e D
AW(E
EAM(E (.)8)
where
@
d‘(Ei) =T Q‘)(b“ " ( a;}u&bd;l{‘z) (1 1)

+ + x ) (59)

vliﬂ)(E‘ )a(‘p')n=h¢2\1 -a)“wl)llub:ﬂﬁ- o (D -+ Ba’ E’Q]' + lﬂ“aypa(pm)u . (‘_ -

and where the sign of AY(E,), just like in the case of
the two-valley miodel, determines the tvpe of change in
the number of solutions at the critical field strength.
For ¢~ exp —yil the critical field E is almost V2
times larger than in the case when the cwrent is di-
rected alony the [100] axis, and also the type of change
in the number of solutions should be different since

A(l)(r(l) . __‘2/ V'Z exp (__'y“ A1 - n)) =l

5‘0(}:( )) > 0,

3. Silicon, [111} direction. Having directed the x
axis and the current along the crystallographic direc-
tion [111], ard the y axis along the [071] direction, in
the xz plane we obtain

0 (whereas

¥2a

1 —ajy2 )
] e

—a/§y2  1-ta2 I PomTE

‘ 1
S yze -

iy, 3 == Hy o2 '

where we define p and a in the same way-as for ger-
Mg,

Besides the trivial solution corresponding Lo a uni-
form population of all three pairs of valleys, there exist
two more types of triply degenerate solutions corre-
sponding to an identical population of any two pairs of
valleys at thie expense of enriching (type I) or depleting
(type II) the populatica of the remaining thivd pair of
valleys. l.et us select as an exaiaple one solulion of
each type, for which Ey =0, and also

H, = 1. 5= 0L, (61)

where
Wy o= Bt af20 + (1 Fa/2)0),
M= EAft 4 2082 0 4 (1 — a)0¢],

as before 4 =tan 0 = EZ/EX

The equatlun for ¢ has
the form .

u'U
1 1 a. W

DU DL

2011 + (I, ) (62)

0§ == Y2~ =
The sohitions of k :q. (62) are aisposed in the interval
(-a /2 /(1 - a), av2/(2 1+ a)), vver which the right-hand

_side of (62) varies monotenically. Currying out the
unulysis, which is analogous to the one carvied out in
Sec. 1 for the snnplest model, we arrive at the conclu-

GRIiBNIKOV, KOCRELAP,

and MITIN

& ,
£ LY
ag == —— £y
~ . »
FIG. 8. Possible dependences of 9 on
!:x Im the current along the | 111} axis a ) e
in silicon. by + 2

sion concecrning the existence of an interval of field
strengths (L‘l' Eﬁ“) in which two vther (see Fig. 8)
solutions exist in addition to the trivial solation ¢ =0,
EY, EY) there

may exist an interval of field sirengths (E‘cl’ I“h’) in
which the trivial solution is unstable (Fig. 8a), So that
the semiconductor necessarily is found in one of the
stable anisotropic states. If the condition Ey =0 is rig-
orously ensured (i.e,, if a short-circuiting regime is
created in the y direction, like the regie in the z di-
rection created in Sec. 1), then both sections repre -
sented by the solid line on Fig. 8a are stable. However,
if the appearance of a fluctuating field Ey is possible
{i.e., iy =0), then the solution depicted by the curve in
ihe upper half-plane in Fig. 8a turns out to be unstable
and goes over into one of the states wheie the popula-
tion of only one valley is cnriched. If in order to calcu-
late the fields Ep it is necessary to specity the form
of @¢(I1), then just as before, expressions for the fields
Ee can be obtained in general form after an expansion
of &, , in terms of small ¥ on Ex near the critical
fietd is given by the expression

avVe a(Il) - T (dufdfhypan |E.|—
Ve R F N, @ B,

in this connection, inside the interval (

9= {63)
where lip = EZ, Since the denominator of expression
(63) in real situations is apparently always positive, in
the interval (E‘él‘ s E},_h’) a semiconductor smoothly
(without any discontinuity) changes into the state with

4 > 0, which corresponds to an identical enrichment of
the first and second pairs of valleys at the expense of
a depletion ot the third pair, and which is stable only
upon a stringent guaramty that Ey =0, In the state of
the opposile Lype—with a strong enrichment of the third
pair at the expense of the first two pairs, only a dis -
continuwous transition is possible, as is clear from

Fig. ta.

ESTIMATES OF THE DLPENDLNCE OF THE
lNTERVALLEY TRANSITION TIMES ON THE
HEATING POWER

The intervalley redistribution was investigated theo-
vetically®? und experimentally 37 in appreciable elec-
tric fields (Ex o+ 1 kV/cm), when the average energy of
the carrier exceeds the energy of an intervatley phunon
€, (in germunium, according to 171 the intervaliey
transitions correspond to a4 phonon with an enei gy
T, = 3167 K), su that the iy depend on the heating power
comparatively weakly. Soae “acceleration” of this de-
pendence may vceut, a$ voted in €21, due to transitions
between equivalent valleys by means of higher minima,
uf the conduction hamd.

We consider that a4 more favorable region for the ob-
servation of the multivalued Sasaki eftect and the spe-
cial preperties of the elecirical condactivity and of the
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Hall effect associated with it i8 the region of extremely
jow lattice temperatures (kT << ;) and of such field
strengths Ex that the average encrgy of a earrier re-
maing below ¢,, so that the dependence of T4 on the
heating power is close to exponential. For this region
of field strengths and temperatures, let us estimate the
function ®(i1) which determines the field E¢ and the
entire behavior of the semiconductor,

Let us assume (since ¢, is smaller than the energy
of an optical phonon) that in the case under considera-
tion the only mechanism of intravalley scattering of
electrons is scattering by acoustic phonons (for which
extremely pure crystals are required; an experimental
situatjom close to the one being considered was studied
by Kastal’skii and Ryvkin ), Such a situation was con-
sidered in the article by Gantsevich, ®J and from his
formulas one can obtain the following expression for the
drift time of electrons from the valley labelled a:

s+s.) .

=.-{fn(:) (_4+f) az+)‘n(z)(1+ dz} (64)

x {'f;:-(}““’.“) ( !y;e-: =) e}
where
%o == eu/kT, ‘ R(‘)“‘_,‘Ym ‘czﬂgﬂnu

and the 7§ are energy relaxation times. For xo > 1, ga
from Eq. (64) it follows that

for ga<<1
‘"
';:"“[‘* =)k
for x, >> ga > 1 .
L (_3:. I8
L &a LN IUATRE

The quantity ®'/& entering into the expression for
the critical field is equal to the sum (7'/7) + (p"/p),
where in our case 0> pu'/u > —1/40, and 1'/7
= —gu(g)/1l, where «(g) is a slowly varying factor:

- In(xjg)—1
%{g) P for g<€i,
#{g) =1lu (eg/2) for g>1

(here e is the base of the natural logarithms). Thus,

the critical field is determined from the condition
20'gx(g.) = 1. {65)

One root of Eq. (65) is located near ge ~ 1/2a% In x, so
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that the field EY’ approximately coincides with the field
at the beginning of the heating up or is even somewhai
smaller than it (g, <1). The second root of (69) is io-
cated at g, >> 1 when K(gc)= 0, 60 that the field E
corresponds to a situation when the average energy
approaches €.

We further note that near the root E‘h’ the functxon

@ ~x;6 = exp — yI1, where

— et ‘D)
° kT

The estimates of A, A% and A‘Y’ made above using
such a &(I1) indicated that in germanium, for the direc
tion of the current along the {110] axis and alsoc along
the [100] axis, upon provision that E, = 0 thereisa
change in the number of solutions at the points E"’

of type I, but if the current is along the [100] a,xis and
E;+#0 then changes of type Il may occur. The latter
property justifies the detailed analysis of this type of
changes, which was carried out in Sec. 1,

o z,.

1V. 1. Denis, In: Aktual’nye voprosy fiziki polupro-
vodnikov i poluprovodnikovykh priborov (Current Prob-
lems in the Physics of Semiconductors and Semicon-
ducting Devices), Vil’nyus, 1869, p. 50,

*H. G. Reik and H. Risken, Phys. Rev. 126, 1737
(1962).

M, Shyam and H. Kroemer, Appl. Phys. Lett. 12,
283 (1968).

‘E. Erlbach, Phys. Rev, 133, 1976 (1963).

$J. C. McGroddy, M. I. Nathan, and J. E, Smith, IBM
J. Res. Develop. 18, 643 (1868).

'V. A. Kochelap and V. V. Mitin, Fiz. Tekh. Polu-
prov. 4, 1051 (1870) [Sav. Phys.-Semicond. 4, 896
(1970)j.

7Gabriel Weinreich, T. M. Sanders, Jr., and H. G.
White, Phys. Rev. 114, 33 (1968).

8 A. A, Kasial’skii, Figz. Tekh. Poluprov, 3, 653
(1968) [Sov. Phys.-Semicond. 8, 546 (1968)]; A. A,
Kastal’skii and S, M., Ryvkin, ZhETF Pis. Red. '1, 446
(1968) {JETP Lett. 7, 350 (1968)].

¢ 8.V, Gantsevich, Fiz. Tverd. Tela 9, 909 (1967)
[Sov. Phys.-Solid State 9, 707 (1967)].

Translated by H, H. Nickle
207



