DISTANCE DETECTION

EE 594 - Consumer Optoelectronics Dave Vu March 17, 1999

MOTIVATION

- My Motives
 - Concept is simple
- Why others may be interested
 - Distance/Velocity measurement is an essential tool in many commercial and military applications
 - Endless possibilities for future development and research

OVERVIEW

• Many ways to detect distances using wave propagation properties

Laser Sources

– visible light (380 - 770 nm)

- infrared (> 800 nm)

microwaves (>4000nm)

- Best Detection Method depends on Level of Detection desired
 - Application Specific: Range of distance desired? Error allowed? Coherent Signals? Pros/Cons?

BASIC CONCEPT

- Emitter: Direct a beam at approaching or receding object
- Receiver: Portion of beam is reflected and received by Detection Unit
- Translation of Signal
 - <u>Point Light Source</u>: Flux Dens \propto 1/distance²
 - <u>Lasers</u>: Time dependent using 'c' as reference; Distance = RT / 2
 - <u>Interferometry</u>: Phase Difference ∝ Distance
 - <u>Microwaves</u>: Δ Frequency \propto velocity

POINT SOURCE

Flux Density = I / d^2

POINT SOURCE ERROR

INTERFEROMETRY

MOIRE EFFECT

• Mechanical Interference of light by superimposed network of lines

SPEED DETECTION

- Radar Microwaves
 - Supported by the Doppler Effect:
 - Δ Frequency \propto velocity
 - beam of microwave energy (~9000-28000nm) hits target and a portion of it is reflected
 - reflected beam is shifted in frequency proportional to velocity of target => Signal Processing
 - Scatterability
- Lasers
 - Similar concept as radar except:
 - Coherent light source
 - sample of change in distance over a period of time
 - Accuracy of reading are affected by:
 - halogen lamps, weather, reflection and refraction of beam

APPLICATIONS

- Commercial
 - Vehicles, Speed Regulation
 - Personal use: Room Dimensions
 - Maufacturing, Robotics
- Military
 - Positioning / Locating applications
- Education/Research
 - NASA/NSF: Shuttle missions, measurement of distance in other mediums (ie. atmospheres, space)

SUMMARY

- General concept with lots of potential
- Many ways of interpreting and manipulating signals
- The method we use to analyze it relies heavily on the requirements of the application

REFERENCES

- General Laser Reference Sites
 - http://www.fastguy.com/
 - http://www.intl-light.com/handbook
- Laser measurement
 - http://www.renishaw.com/laserscale/
- Position Determination Using Lasers
 - http://on-trak.com/psd
- Laser Range Finders (LIDAR)
 - http://www.meos.com/_Pages/EXP15-ENG-NAV.htm
 - http://ranier.oact.hq.nasa.gov/Sensors_page/Laser/LaserOV.html
 - http://www.ksc.nasa.gov/shuttle/missions/sts-64/mission-sts-64.html
- Distance Detection Using Interferometric Techniques
 - http://web.wse.nadn.navy.mil/wse/academic/courses/es300/supple m/interfer.htm