Optical Computing Outline

- Why?
- Applications
- Power considerations
- Mathematical possibilities
- Logic Gates (Imaginary and real)
- **VSLI**
 - Summary

Why?

- What could possibly be better?
 - Bandwidth
 - Elimination of Interference between connections
 - Power? Are you sure?
 - Optical devices need power as well as electrical devices
 - Capacitive effects of creating threshold voltage and transmission line characteristics.

Applications of Optics

Networks

- Network connections are Fiber Optic
- Peripheral Connections
 - Fiber Optic connections are waveguides for the light. A waveguide is needed to channel light whereas without it light would disperse uncontrollably.

Applications of Optics (cont)

Processor to processor connections.

- Fiber optics offers wide band width and promotes parallelism.
- Interprocessor connections
 - Such as cache to CPU or to Main memory
- Image processing
 - Laser lend themselves to Image processing because of matrix calculations and convolution are extremely easy to implement.

Power

• Optical Processors need more power than electrical processors called Reactive Power $P = \frac{(C)V^2}{t}$

=time required to charge a capacitance C to a voltage threshold level V. V=threshold voltage C=capacitance in transmission lines and connections.

– Interconnection equation

$$Pe = \frac{(C+Cd)V^2}{2t}$$

Power (cont.)

Taking finite power efficiency and R representing responsivity of the detector usually 25% or so.

$$P = \frac{V(C_D + C_d)}{\boldsymbol{h}_s R \boldsymbol{t}}$$

Electrical > Optical

$$\frac{(C+Cd)V}{2} > \frac{C_D + C_d}{h_s R}$$

Optical connection is superior when characterisitc resistance is included.

$$\frac{V}{R_0} > \frac{(C_D + C_d)}{Rt}$$

Logic gates (Imaginary)

• Logic gates are implemented optically by controlling the population inversion that occurs to produce lasing. A controlling laser is used to control the population inversion thus causing switching to occur.

 Sounds brilliant but not likely to be implemented because of power requirements.

Mathematics

Several methods for mathematical calculations.

- Conventional ALU
- Matrix calculations
- Convolution as a from a arithmetic for pure optical computers

Logic Gates (Real)

Holographic truth table

- Destructive interference will light to be emitted or not based on phase relationship
- Logic based on gratings
 - 1 is represented by vertical grating causing light
 - 0 is represented by horizontal grating causing darkness1

VSLI

- Similar to VSLI design with electrical devices by layering glass on top of a substrate to make Thin film waveguides.
- Mirrors can be simulated by using diffraction grating.

VSLI (materials)

Materials

- GaAs is most widely used because this material can make modulators, lasers, switches and detectors.
- Hybrid LiNbO3, best for waveguides, modulators and switches.
- Silicon based
 - easy to fabricate on single crystal, with a insulating layer of SiO2.
 - Inferior to devices based LiNbO3

Summary

Outside to inside lineage

- From networks to processor, processor to device, processor to processor etc.
- True Optical processing in it's infancy
- Remember that bandwidth is limited by the wavelength of light whereas electrical connections are primarily limited by size.

References

- Optical Processing and computing, various authors, Academic Press
- Optical Computing, Dror G. Feitelson, MIT Press