Java Applets as Learning Aids in Photonics

Pratibha Gopalam, A. N. Cartwright

Electrical Engineering
State University of New York at Buffalo
Motivation

• Introduce Java Applets as supplementary instructional material
 – Extend the power of Java and the Internet to educational tools
 – Present information in a more visually appealing manner
 – Create a dynamic and stimulating learning environment
 – Address various learning styles in students

• Develop a supporting software framework that
 – Provides guidelines for developing ideal instructional tools
 – Follows good software design and development practices
 – Captures the experience of instructors and software developers
 – Helps instructors to effortlessly develop educational applications(Applets)
Teaching and Learning Styles

- To address various learning styles, instruction should
 - Introduce new concepts by building on fundamental principles
 - Help visualization of complex systems
 - Facilitate context based learning with demonstrations of real life scenarios
 - Encourage experimentation
 - Call for understanding information in a global context
Teaching and Learning Styles

<table>
<thead>
<tr>
<th>Preferred Learning Style</th>
<th>Corresponding Teaching Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensory Intuitive</td>
<td>Concrete Abstract Content</td>
</tr>
<tr>
<td>Visual Auditory</td>
<td>Visual Verbal Presentation</td>
</tr>
<tr>
<td>Inductive Deductive</td>
<td>Inductive Deductive Organization</td>
</tr>
<tr>
<td>Active Reflective</td>
<td>Active Passive Student Participation</td>
</tr>
<tr>
<td>Sequential Global</td>
<td>Sequential Global Perspective</td>
</tr>
</tbody>
</table>

Dimensions of Learning and Teaching Styles (Felder and Silverman (1988)).
Educational Java Applets and Learning Styles

- Educational Java Applets
 - Provide user configurable and data probing tools to help inductive style of learning
 - Promote global understanding of large-scale systems using context based case studies
 - Explain complex systems using vivid simulation schematics to favor visual learners
Educational Java Applets and Learning Styles

Gain Mechanism (Rate Equations)

- Educational Java Applets
 - Provide helpful demonstrations of theoretical concepts
 - Provide virtual experimentation
 - Provide graphical interfaces to allow active learners to dynamically change the behavior of the system

Applets when used in conjunction with traditional lectures help approach an ideal teaching style
Examples of User Configurable Design Applets

- Optical Design System
 - Optical components
 - Graphically represented.
 - Menus used to dynamically change parameter values
 - HTML tags used to statically design systems
- Students are allowed to experiment with various configurations of lenses, mirrors, polarizers, and sources

Optical Design System
- Graphically represented.
- Menus used to dynamically change parameter values.
- HTML tags used to statically design systems.

Polarization Applet
- Center for Active Learning of Microelectronics and Photonics
- Polarization Modulator
 (Halfwave Plate between Cross Polarizers)

Examples of User Configurable Design Applets

- Optical Design System
- Polarization Applet

- Optical components
 - Graphically represented.
 - Menus used to dynamically change parameter values.
 - HTML tags used to statically design systems.

Students are allowed to experiment with various configurations of lenses, mirrors, polarizers, and sources.

<applet code="JonesSys.class" width="450" height="350">
 <param name=separator VALUE=",">
 <param name=JonesVector0 value="50,0,50,0,10,-10,1">
 <param name=Polarizer0 value="0, 10, 80, 0">
 <param name=Polarizer1 value="1, 60, 80, 0">
 <param name=WavePlate0 value="90, 35, 80, 0">
 <param name=RotateElement value="1">
 <param name=StartZ value="-20">
 <param name=StopZ value="80">
 <param name=DeltaZ value="0.1">
</applet>
OOD : Design Patterns and Frameworks

- Essence of true Object Oriented Software
 - Simplicity, Modularity, Reusability, Extensibility
- OO languages provide implementation support
- Design Patterns Provide:
 - Insights required for making reusable software
 - Experiences required for Robust and Scaleable solutions
- Frameworks
 - Collection of domain specific design solutions
 - OO reuse technique serving as the skeleton of an application
 - Reusable “semi-complete” application with built-in flexibility to transform itself into custom applications
 - Help in rapid, minimal effort, development of similar applications
Six Key Elements of the Framework

- **Singleton Object**: Define Rules
- **Strategy Object**: Defines Interactions
- **Components**: Encapsulate Data
- **Visitor Objects**: Probe Components
- Toolkit provides utility classes
- CAMP

University at Buffalo
Electrical Engineering
Example Implementation of the Framework

This Applet demonstrates a diode pumped laser system using ray tracing.
Examples of the various elements of the framework are labeled.
User Configurable Virtual Laboratory Applets

• Components
 – Encapsulate Data
 – Either Active or Passive
 – Typically have a graphical interface
 – Developers: Undergraduate students

• Strategy Objects
 – Define governing principles for component-to-component interaction
 – Handle computational algorithms
 – Developers: Experienced programmers

• Singleton Objects
 – Define rules(units) for uniformity
 – Provide global access to rule information
 – Developers: Experienced programmers
User Configurable Virtual Laboratory Applets

• Visitor Objects
 – Probe and change the status of components
 – Allow dynamic run-time configuration
 – Employ graphical user interface objects
 – Developers: Experienced programmers

• Toolkit
 – Comprised of utility classes
 – Evolve over time with new additions from users
 – Developers: Depends on complexity

• Container
 – Placeholder for interdependent elements
 – Makes constituent elements aware of each other
 – Designer: Domain expert
User Configurable Virtual Laboratory Applets

2X Beam Expander

Fiber Optics - Slab Dielectric Surrounded by Air

Cavity Stability using Ray Tracing

Diode Pumped Laser Cavity

Camp website: www.ee.eng.buffalo.edu/~camp
Conclusions and Future Work

• Develop a generic, portable, set of objects for the proposed framework for use by other educators
• Standardize the development of user configurable virtual laboratory environments to serve as supplementary educational resources for various science and engineering subjects
• Adopt the software component technology using JavaBeans™ to further enhance the developed framework
• Supported by National Science Foundation Grant #9950794 (PI’s: Chu R. Wie & A. N. Cartwright) and NSF CAREER Award #9733720 (A. N. Cartwright)