
3532

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

Java Enabled Opto-Electronic Learning Tools and A Supporting

Framework

Pratibha Gopalam, Alexander N. Cartwright,
Electrical Engineering

Bina Ramamurthy,
Computer Science and Engineering

University at Buffalo, State University of New York

Abstract

The use of multimedia tools over the World Wide Web is an extremely desirable instructional
method. Unintentionally this has created a maze of online tutorials and demonstrations with huge
amounts of information in disarray. In addition, Cognitive theories, like Active Learning and
Experiential Learning, applicable to the engineering domain, sermonize modeling, problem
resolution and problem visualization as the key elements in instruction. In this paper, we present
some of our work on building user configurable Java Applets for education in photonics (lasers
and optics). These include design Applets for laser principles that illustrate optical ray tracing
systems, population inversion, and 3-D visualization of optical polarization.

This paper focuses on the design and implementation of user-controlled context based
educational resources. A design-based learning experience using Java Applets and the multiple
facets of the design and development of such a software system is described. Specifically, an
initial object-oriented framework that emphasizes key elements of design like reusability,
flexibility, modularity and extensibility is provided. This framework is developed for the design
of educational Java Applets that provide user configurable simulation environments. The six key
elements of the framework are: Components, Strategy objects, Singleton objects, Visitor objects,
Toolkits and Containers. Moreover, methods to initialize Applets using design windows and
HTML tags are presented. This framework provides basic guidelines for developing user-
configurable Java simulation environments for use in any science or engineering field.

Introduction

Research in engineering education has clearly identified the need for improving teaching styles
to match the vast spectrum of learning styles [1,2]. R. M. Felder and L. K. Silverman, in their
paper “Learning and Teaching Styles in Engineering Education” [1], provide an excellent
discussion of learning and teaching styles. Felder clearly describes how specific teaching styles
can be adopted to address various learning styles found among students [2]. These variations in
learning are classified as 32 different possible learning styles. For clarity, we have repeated the
summary table from pg. 675 of Felder’s paper [1] in Table 1. It is important to realize that people
do not neatly fall into any particular learning style but that there is a continuum of learning
styles. For example, it is possible for both visual and verbal teaching to be equally effective for a

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

particular student. With these various learning and teaching styles identified, any instructional
material structured to address all these learning styles would naturally prove very effective.

Today, there is additional pressure to present material in a dynamic visual appealing manner.
Students, when taken collectively, expect a stimulating learning environment similar to that
provided by television, video and computer games to which they have grown accustomed. Java
Applets can be used as supplementary instructional material in traditional lecture style courses to
allow instructors to present educational material in a more visually appealing manner. In this
way, Java Applets allow for the incorporation of teaching styles not normally practiced.

Relationship between Learning Styles and Java Applets

In the language of Felder, the traditional lecture style of teaching (abstract/ verbal/ deductive/
sequential) incidentally addresses only the intuitive/deductive/reflective/sequential learning
styles [Table 1]. Invariably, lecture style teaching is a mismatch with students that have other
learning styles. To increase the impact of teaching on students, lecture style teaching should be
coupled with active student participation with live demonstrations, and practical laboratory
exercises with lots of scope for experimentation and reflective observation. Educational Java
Applets can be used to introduce context-based case studies and encourage experimentation,
which would appeal to the sensory/visual/inductive/active/global learners. Hence, we believe that
a teaching technique using Java Applets in conjunction with traditional lectures would approach
the ideal teaching style.

Table 1: Dimensions of Learning and Teaching Styles (from Felder and Silverman (1988)). .
The learning and teaching styles with an * benefit tremendously from Java Applets.

Preferred Learning Style Corresponding Teaching Style
Sensory*
Intuitive }Perception

Concrete*
Abstract }Content

Visual*
Auditory3 }Input

Visual*
Verbal }Presentation

Inductive*

Deductive }Organization
Inductive*
Deductive }Organization

Active*
Reflective }Processing

Active*
Passive }Student Participation

Sequential
Global* }Understanding

Sequential
Global* }Perspective

Educational Java Applets, in their simplest form, can provide wonderful demonstrations and
concrete examples of underlying principles and concepts. They help sensory learners that have a
strong desire to see things working to understand the theory. They also provide an excellent
mechanism for presenting concepts and principles using pictures, block diagrams and vivid
simulation schematics, to favor visual learners. The Applet’s graphical user interface allows the
user to interactively change the behavior of the Applet and hence appeal to active learners. More
importantly, by allowing learners to dynamically set parameter values and watch varying results,
Applets appeal to the inductive style of learning. In addition, Applets can appeal to both global

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

and sequential learners by providing an overview of large-scale systems with links to detailed
demonstrations of specific underlying fundamental properties [4]. Therefore, Applets provide a
powerful means of supplementing existing classroom instruction to address learners that prefer
sensory, visual, inductive, or global learning. Specifically, adding educational Applets to our
contemporary lecture style curriculum will provide an adept teaching style that could match the
learning styles of most students and provide each student with some educational experience that
they enjoy.

Applets that demonstrate a specific concept are extremely useful for specific domains. For
example, Chu R. Wie has compiled a number of excellent semiconductor educational Applets [5]
and the associated framework for this type of Applet [6]. Here, we would like to extend the
functionality of Applets to allow the users to design and simulate experiments and systems (user-
configurable virtual laboratory Applets). Moreover, additional groups have realized the
importance of developing user configurable simulation environments [7, 8].

Figure 1: Optical Design Applet showing graphical representation of optical components and
sources. This applet is a design environment where students can add, remove, and modify
optical components and observe the resulting ray tracing.

Example of User Configurable Design Applet: Optical Design System

Figure 1 shows a snapshot of our Optical Design Applet where all the optical components
(lenses, mirrors, dielectrics) in the optical system are graphically represented. This Optical
Design Applet engages learners in active experimentation because it lets users add and remove
components like lenses, mirrors, dielectrics and light sources. It also lets users change various
parameters of the components such as the focal length of the lenses, the radius of curvature of the
mirrors, the location of these components, and the type of light sources. This simple user

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

configurable design applet allows a student to experiment with various configurations of lenses,
mirrors, and sources before and after conducting optical experiments in a laboratory. In this way,
students get a feeling for what to expect in laboratory, have a method for reproducing what they
saw in laboratory, and appreciate how theory approximates actual conditions in a laboratory.
Applets that give users total control for running virtual experiments provide a very conducive
environment for encouraging and developing the questioning approach to understanding that is
very important in engineering.

Object Oriented Programming and Frameworks

Programming in object-oriented languages, like Java, is often referred to as a means of making
software systems modular, extensible and reusable. This is not the whole truth; object oriented
languages merely help incarnate these concepts by supporting implementation features like
inheritance, polymorphism, abstract classes and interfaces. Furthermore, object oriented
languages are only tools, not a panacea for all distresses in software engineering. Programming
software systems in an object-oriented language by no means guarantees them to be reusable and
scalable. Simplicity, reusable abstraction and systematic organization together form the essence
of object oriented software. These have never been easy to attain and continue to evade even
experienced object oriented designers. New designers baffled by the degree of insight needed to
get a design “right”, tend to get frustrated with the amount of redesign and rework involved in
developing robust and scalable software systems. Experience teaches designers not to solve
every problem from first principles, but to reuse solutions that have worked in the past.

During the initial stages of our efforts at developing Java educational Applets, an entire new
applet was developed from scratch for each new topic. This resulted in an enormous amount of
time being wasted. In order to increase productivity, we started to directly adopt designs,
protocols and implementations from our previous work. This was possible because of some good
generic design strategies that were adopted in earlier Applet designs. In software engineering a
number of design techniques have been identified to solve specific design problems and make
object-oriented designs flexible, elegant and ultimately reusable. A designer who is familiar with
such patterns can apply them immediately to design problems without having to rediscover them.
These experiences have been recorded as Design Patterns [9]. Furthermore, we realized that the
distinctive set of solutions (explained in detail later) that emerged in the course of our work
followed some existing design patterns.

The collective use of these design patterns for developing applications takes us to the next level
of organization; Frameworks [10]. A framework is an object oriented reuse technique that serves
as the skeleton of an application. Frameworks have built-in flexibility and can be customized by
an application developer to meet his/her needs. In other words, a framework is a reusable “semi-
complete” application that can be specialized to produce custom applications [9]. Most
importantly, frameworks help capture the design decisions and experiences that are necessary
within domains for which the applications are being developed, engineering education being the
domain of interest here. Once defined, frameworks help in the rapid development of similar
applications with minimal effort. The benefits of following such an approach and developing a
Framework have been well documented [11].

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

Our present understanding of teaching styles and awareness of design patterns and frameworks
for software development allows us to set forth a suitable framework for developing user
configurable educational tools. This framework will ensure that any user configurable
educational tool developed will invariably adhere to guidelines identified for effective teaching
styles. This framework is the compilation of the collective experiences from the fields of
education and software engineering and will allow for easy development of powerful teaching
aids in engineering education.

Framework for Developing User Configurable Virtual Laboratory Applets

Developing user-configurable virtual laboratory Applets has provided us much of the necessary
experience to identify the key elements for this framework. This being only an initial definition
of the framework, it is imperative that it is enhanced as a result of new observations during the
course of future work and as the result of revisions from other educators using this framework.
Figure 2 shows a block diagram of the framework that shows the various interactions between
the elements. The six key elements we have identified are 1) Components that encapsulate data,
2) Strategy objects [9] to define interactions between Components, 3) Singleton objects [9] to
define rules for the Components, 4) Visitor objects [9] to probe and change the status of
Components, 5) a Toolkit [9] to perform routine tasks and 6) a Container to hold all these co-
operating and interdependent elements. When using this framework to develop educational
Applets, these elements should be developed through discussions between subject experts
(instructors/professors) and the programmers implementing the specific Applet
(professors/students/programmers).

Figure 2: User Configurable Virtual Laboratory Framework

In the discussion that follows, we will assume some familiarity with object-oriented techniques,
software design patterns, and technical terms from software engineering. We encourage readers

Framework

 Toolkit
Provides Utility

Classes

Container

Components
Encapsulate Data

Visitor Objects
Probe Components

Singleton
Object

Define Rules

Strategy Object
Defines Interactions

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

not familiar with these topics to refer to the appropriate references [9, 10, 11] for additional
information. The essential elements for the framework for a user configurable design
environment are:

1. Components: Components are simple elements that encapsulate the data associated with
the object being modeled and typically have a graphical interface. This data can be
accessed and manipulated programmatically through interface methods. The user
interaction tools (pop-up menus, property lists and dialog boxes) use these interface
methods to probe, change and monitor the data. There are two types of components:
active and passive. Active components are components that are changed by interaction
with other components (e.g., light sources). Passive components are those components
that remain unchanged but can change other components behaviors (e.g., lenses).
Students or programmers can develop components for the framework. These developers
do not need to know everything about the system. For educators, this is where
undergraduate students can effectively contribute to the development of educational
Applet resources. As long as the instructor/lead person provides detailed specifications, it
is relatively straightforward to develop these components.

2. Strategy Objects: These objects handle all the processing, the mathematical calculations,
and the implementation for algorithms used in the design. They define the governing
principles for the applications being developed, e.g., ray tracing matrix manipulation or
solutions to rate equations. In other words, these objects define component-to-component
interaction. These objects can in turn use the toolkit utilities (graphs, lines, data values,
etc.) for presenting the results to the user. Strategy objects are quite complex and might
require much more work from an implementation viewpoint. However, these are objects
that are developed once for the lifetime of the application. They are essential to the
framework, and the design of these objects requires much attention. Experienced
software team members (programmers) are needed to develop these objects.

3. Singleton Objects: These are key elements that define the rules that uniformly apply to
all components in a given scope. These provide global access to the information required
by components conforming to these rules. All complying components have a reference to
the Singleton object or are registered with this Singleton object. Therefore, any change in
this Singleton object gets reflected in all components associated with that Singleton
object. These objects can be used to define uniformity in distance, pressure, temperature,
or color. Singleton objects also need to be developed by experienced software developers.

4. Visitor Objects: These are generic objects provided in the framework that can be called
upon by the component objects to allow access to their data. These visitor objects provide
a mechanism for accessing and changing the component’s data. Thus, visitor objects
allow dynamic run-time configuration of components in the applet. Furthermore, these
objects can monitor and use the toolkit classes to plot changes in the components data.
Generally, these visitor objects employ some graphical interface object, e.g. pop-up
windows and dialog boxes, to set, get and display component specific data. Experienced
program developers should develop visitor objects.

5. Toolkit: The toolkit is a set of related and reusable library classes designed to provide
general-purpose functionality. It is comprised of utility items like graphs, calculators,
integration routines, etc. In addition, users of the framework are free to create any

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

additional tools that are essential for their subject specific needs. In this manner the
toolkit will continue to evolve over time. The choice of the developer of these tools
depends on the level of complexity involved in the particular tool. In some cases, it might
be sufficient to provide students with detailed specifications of a desired tool and allow
them to develop it. However, experienced developers should be used for complex tools.

6. Container: A container integrates all the constituent elements and makes them aware of
each other. In order for this to be accomplished, all contributing objects have to be
registered with the container. The container defines how these objects collectively
cooperate in any application. In addition, the container provides the placeholders for all
participating objects in an application. A person well versed in the subject area of the
educational applet (e.g., in our case photonics) should be responsible for the design the
container.

The framework moves the responsibility, for the application’s behavior and operation, away
from the user of the framework into the framework. This is referred to as inversion of control
[11]. The developer of any one key element does not need to have complete knowledge of how
the total framework works. Elements, developed individually, are not required to actively react to
any event in the framework. It becomes the responsibility of the framework to dispatch events to
the appropriate elements and call upon them to react by invoking “hook methods”[11] on them.
The framework achieves this by requiring that the user of the framework conform to standard
protocols by implementing specific interfaces or abstract classes.

The framework requires that Applets provide design windows for specifying the initial system
setup and some means of passing the values of the parameters associated with the components.
In the present implementation of the framework, parameter passing is accomplished through the
HTML APPLET tag. This scripting ability, through HTML, allows for statically configuring the
context of the system or experiment (the user of the applet is not allowed to modify the system
layout). From an educational viewpoint, this allows instructors to freeze the educational content
and still allow students running the applet to use the interactive tools provided to dynamically
change values and parameters.

Example Implementation of the Framework

It is important to realize that, to date, we have only developed a few systems that follow the
guidelines in this framework. More importantly, the implementation of the entire framework still
requires refinement before it can be reused by other educators that would like to develop similar
user configurable virtual laboratory environments. However, with this preliminary definition of
the framework, we are constantly working to develop a generic set of objects, non-subject
specific, which can be readily dispersed through the WWW.

As an example of the implementation of the Framework we will explain the design and
implementation of the Optical Design System. Figure 3 shows an example of the Optical Design
System where users can watch optical rays tracing through various optical components. Users are
allowed to add, delete and modify optical components in the system. To aid in the understanding
of this prototype implementation of our framework, we will follow the same numbering scheme
previously used above in the definition of the framework. Moreover, we have inserted a number

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

of labels in Figure 1 to clearly show the various elements of the framework. Names in italics in
are the actual names used in the coding of the Optical Design System.

Figure 3: An example configuration of the Optical Design Applet. This Applet demonstrates
a diode pumped laser system using ray tracing. This applet was generated with HTML tags.
Examples of the various elements of the framework are labeled.

Specifically, the Optical Design system is made up of the following elements:

1. Components: The components in this applet are lenses, mirrors, and rays (which
make up the sources). These components encapsulate data and provide interface
methods for changing their properties. Every optical component is composed of an
ABCDObject and an OpticalInterface object. In order to participate in container-to-
component communication, every optical component implements the
OpticalComponent interface. Furthermore, these components are responsible for
updating their internal ABCObject as a result of user interactions. Ideally the
responsibility to provide access to the component’s data should be delegated to the
Visitor objects provided in the framework. This provides a standard means for the
container (applet) to interact with the components.

2. Strategy Objects: At the present time, we have incorporated the algorithm for ray
tracing within the ray object. Ideally, the strategy for the interaction of the ray with a
component should be in a separate Strategy object. Accordingly, the Strategy object is
a separate entity in the Polarization of Light applet shown in Figure 4 [12].

(1) Passive Components
Lenses, Mirrors

(3) Singleton Object
RealWorld Interface

(4) Visitor Object
Applet Pop-up Menu

(6) Container
Applet

(5) Toolkit Objects
Help, Arrows

(1) Active Component
Point Source

(2) Strategy Object
Ray Tracing
(Not Visible)

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

3. Singleton Objects: The RealWorld object gives us a standard set of units for
measuring distance (e.g., cms) in this applet. Changing the RealWorld object is
accomplished by the RealWorld graphical interface (shown in the upper left hand
corner of Figure 1 and Figure 3). The + and – locations on the RealWorld graphical
interface allow users to zoom in and zoom out by scaling the pixel to distance
variables. When this happens all objects in the applet repaint themselves using this
updated coordinate system information. Moreover, the arrows on the graphical
interface allow the user to scroll the applet in various directions, creating an expanded
virtual layout region. The RealWorld object is fairly generic and has been reused in
the polarization applet to represent units for distance measurement, and in an Energy
Systems Applet to represent energy of a particular level (in electron volts). At the
present time, every component in the Optical Design Applet uses a reference to the
RealWorld object to update itself. However, a more recent implementation of this
RealWorld object is using messaging and registration of components. In other words,
a component registers itself with the RealWorld object. All registered components
are notified of any changes in that RealWorld object by generated events. In this
way, when the RealWorld is changed all of its corresponding components are made
aware of the change. This causes an inversion of control where the behavior of the
component is controlled by changes to this Singleton object. We have been made
aware of another Java educational resource that provides similar functionality for
treating temperature and pressure [7].

4. Visitor objects: In the Optical Design Applet there are Visitor objects that probe
components to get and set specific state information. As shown in Figure 3, the
addition and deletion of components etc., is handled by a pop-up menu object, which
is a Visitor Object to the Applet. The properties of lenses and mirrors in the applet
can also be modified using property list boxes that pop up when the user right clicks
on the components.

5. Toolkit: We have developed a number of tools to provide for graphical user
interfaces and complex mathematical computations (integration, 3D visualization, and
graphing). Moreover, we have incorporated some excellent tools from NETLIB [13],
and from the Ptolemy project (Ptplot) [14]. The ability to use existing resources, like
those provided by the toolkit, is essential for ease of programming.

6. Container: The applet itself is the container in our Optical Design system. It
recognizes lenses, mirrors, dielectric media and ray sources present in the system. It
also knows how these optical sources interact with components and manages
additions and deletions of components to the system.

Finally, these Applets have the additional benefit of being able to use HTML parameter tags with
the applet to pass initial configuration information. This allows for developing various models by
using a simple scripting language. Figure 4 shows the polarization applet simulating an optical
intensity modulator. The example HTML code (bottom of figure) uses the param fields within
an <applet></applet> HTML tag to initialize the applet.

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

Figure 4: The polarization of light Applet simulating a half-wave plate polarizer modulator
is shown at the top of this figure. The HTML tags used to generate this applet are shown at
the bottom. Note that the parameters passed to the applet determine the necessary data
values for the components.

Conclusions and Future Directions

It is essential to continue this work to develop a generic, portable, set of objects for the proposed
framework for use by other educators. This would be valuable to other educators interested in
developing similar virtual design Applets and laboratory applications. Moreover, any Java
educational resources developed using this framework can be readily incorporated into existing
lecture style courses throughout the country. This framework helps in identifying generic
patterns and techniques that are necessary in the development of any application independent of
the targeted academic discipline. We are planning to adopt the software component technology
using JavaBeans™ to further enhance the developed framework. Finally, this paper represents
our preliminary attempt to standardize the development of user configurable virtual laboratory
environments to serve as supplementary educational resources for various science and

<applet code="JonesSys.class” width="450" height="350">
 <param name=separator VALUE=",">
 <param name=JonesVector0 value="50,0,50,0,10,-10,1">
 <param name=Polarizer0 value="0, 10, 80, 0">
 <param name=Polarizer1 value="1, 60, 80, 0">
 <param name=WavePlate0 value="90, 35, 80, 0">
 <param name=RotateElement value="1">
 <param name=StartZ value="-20">
 <param name=StopZ value="80">
 <param name=DeltaZ value="0.1">
</applet>

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

engineering subjects. As such, we firmly believe that this framework will definitely evolve more
rapidly as other groups contribute to this effort by attempting to use it.

Acknowledgments

The authors would like to acknowledge the financial support of the National Science Foundation,
Award #9950794 and Cartwright’s National Science Foundation CAREER Award #9733720.
We would also like to acknowledge the contributions of Xin Hu, Derek Hoiem and Philip
Manijak in the development of some educational Applets and resources used in this work.
Finally, we would like to acknowledge Chu R. Wie for his advice on the development of Java
Applets.

Bibliography
1. Felder, R. M., Silverman, L. K., “Learning and Teaching Styles in Engineering Education,” Engineering
Education, 78(7), 674-681, April 1988.

2. R.M. Felder, "Reaching the Second Tier: Learning and Teaching Styles in College Science Education," J. College
Science Teaching, 23(5), 286-290 (1993).

3. URL: http://www2.ncsu.edu/unity/lockers/users/f/felder/public/Learning_Styles.html; R. M. Felder, Auditory was
subsequently changed to Verbal.

4. Alexander N. Cartwright, Pratibha Gopalam, N. Liu, Z. Yuan, T. Tang and Chu R.Wie, “Context Based
Educational Java Applets Using Consumer Products,” American Society for Engineering Education Annual
Conference, Session 2632, June 18-21(2000).

5. URL: http://jas2.eng.buffalo.edu; Java Semiconductor Resource, C. R. Wie.

6. Zhiyong Yuan, “Design, Implementation and Application of Framework in Java Educational Applets,” Masters
Thesis, University at Buffalo, Feb. 2001.

7. Bryan Mihalick, “Development of a standalone java-based molecular simulation environment”, Masters Thesis,
University at Buffalo, Feb. 2001.

8. URL: http://wings.buffalo.edu/eng/ce/kofke/applets/; Molecular Simulation Applets, David Kofke.

9. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design Patterns Elements of Reusable Object
Oriented Design,” Addison-Wesley (1995).

10. Ralph E. Johnson, “Frameworks = Components + Patterns”, Communications of the ACM, Special Issue on
Object-Oriented Application Frameworks, Vol. 40, No. 10, Page 39, October 1997.

11. M. Fayad, D. C. Schmidt, “Object-Oriented Application Frameworks,” Communications of the ACM, Special
Issue on Object-Oriented Application Frameworks, Vol. 40, No. 10, October 1997.

12. URL: http://www.ee.buffalo.edu/~camp/applets/photonics/JonesMatrix/modulator1.html; CAMP Website.

13. URL: http://www.netlib.org; Netlib Mathematical Tools for Java.

14. URL: http://ptolemy.eecs.berkeley.edu/java/ptplot/; Ptolemy Project

ALEXANDER N. CARTWRIGHT
Alexander N. Cartwright is an Associate Professor of Electrical Engineering at the University at Buffalo. In 1998, he
received a NSF CAREER Award that supports his research on GaN based optoelectronic devices and his
educational activities. In 2000, he was awarded a Department of Defense Young Investigator Award for research in
piezoelectricity in III-N materials.

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

PRATIBHA GOPALAM
Pratibha Gopalam is a graduate student in Electrical Engineering, at the University at Buffalo. She is researching the
framework development using software design patterns and JavaBeans component architecture. This framework is
for expediting the creation of learning tools in Photonics using Java Applets .She received her undergraduate degree
in Electronics and Communication Engineering from Bangalore University, India, in 1997. She worked as a
software engineer for Hewlett Packard India Software Operations and Asea Brown Boveri Pvt. Ltd. before joining
SUNY at Buffalo.

BINA RAMAMURTHY
Bina Ramamurthy is a Teaching Assistant Professor of Computer Science and Engineering at the University at
Buffalo. Her research is focused on design of Java Technology based systems and Distributed Systems.

